complex or partially overlapped spectra by use of 2-D NMR spectroscopy.

Acknowledgment. We are grateful to the UAB Chemistry Department NMR Facility for use of the Nicolet NMC-300 NMR. M.A.K. thanks Drs. C. L. Krumdieck and C. E. Butterworth for their encouragement in this work and acknowledges research support from NIH Grants NS-18350 and CA-Z8103.

Registry No. Valinomycin, 2001-95-8.

Reaction of cis - $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right]$ with CO_{2}. Synthesis and Characterization of Products of Disproportionation and the X-ray Structure of a Tetrametallic Mixed-Valence $\mathbf{M o}^{\mathrm{II}}-\mathbf{M o}^{\mathbf{v}}$ Carbonate with a Novel Mode of Carbonate Binding

Ernesto Carmona,* Francisco Gonzālez, Manuel L. Poveda, and José M. Marin

Departamento de Quimica Inorgänica, Facultad de Quimica Universidad de Sevilla, Sevilla, Spain

Jerry L. Atwood*
Department of Chemistry, University of Alabama University, Alabama 35486

Robin D. Rogers*
Department of Chemistry, Northern Illinois University Dekalb, Illinois 60115

Received January 31, 1983
Although most of the emphasis in C_{1} chemistry has so far relied on carbon monoxide, the potential application of carbon dioxide as starting material for organic synthesis has been appreciated in recent years. ${ }^{1}$ The current interest in CO_{2} chemistry and the existence of only a brief report on the reactions of this molecule with dinitrogen complexes of molybdenum ${ }^{2}$ prompted us to investigate its interaction with the recently prepared ${ }^{3}$ cis-[M$\left.\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right]$ and $\left[\mathrm{M}\left(\mathrm{N}_{2}\right)\left(\mathrm{PMe}_{3}\right)_{5}\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})$ complexes. Here we report preliminary results based on reactions with cis- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right]$ that lead to the formation of a bis- CO_{2} complex, $\left[\mathrm{Mo}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right]$ (1), two related compounds resulting from the metal-induced disproportionation of CO_{2}, $\left[\mathrm{Mo}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{4}\right](2)$, and $\left[\mathrm{Mo}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{3}\right]_{2}(3)$, and an unusual mixed-valence $\mathrm{Mo}^{\mathrm{H}}-\mathrm{Mo}^{\mathrm{V}}$ complex, $\left[\mathrm{Mo}_{4}\left(\mu_{4^{-}}\right.\right.$ $\left.\left.\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\mathrm{O})_{2}\left(\mu_{2}-\mathrm{O}\right)_{2}\left(\mu_{2}-\mathrm{OH}\right)_{4}\left(\mathrm{PMe}_{3}\right)_{6}\right]$ (4).

Treatment of petroleum ether solutions of cis- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)_{4}\right](1.1 \mathrm{~g}, \mathrm{ca} .2 .4 \mathrm{mmol}, 50 \mathrm{~mL})$ with $50-60 \mathrm{psi}$ of CO_{2} at room temperature results in the formation ${ }^{4}$ of the pale-yellow 1 and the red-orange 3 in ca. equivalent amounts, together with
(1) For recent reviews on CO_{2} chemistry see: (a) Ibers, J. A. Chem. Soc. Rev. 1982, ll, 57-73. (b) Floriani, C. Pure Appl. Chem., 1982, 54, 59-64. (c) Lapidus, A. L.; Ping, Y. Y. Russ. Chem. Rev. (Engl. Transl.) 1981, 50, 63-75. (d) Eisenberg, R.; Hendriksen, D. E. Adv. Catal. 1979, 28, 79-172. (e) Kolomnikov, I. S.; Grigoryan, M. Kh. Russ. Chem. Rev. (Engl. Transl.) 1978, 47, 334-353. (f) Inoue, S.; Yamazaki, N., Eds. "Organic and Bioorganic Chemistry of Carbon Dioxide"; Wiley: New York, 1982.
(2) Chatt, J.; Kubota, M.; Leigh, G. J.; March, F. C.; Mason, R.; Yarrow, D. J. J. Chem. Soc., Chem. Commun. 1974, 1033-1034.
(3) Carmona, E.; Marin. J. M.; Poveda, M. L.; Rogers, R. D.; Atwood, J. L. (a) J. Organomet. Chem. 1982. 238, C63-C66; (b) J. Am. Chem. Soc. in press.
minor amounts of the dark-blue 2. Complex 1 can be extracted with toluene from the above mixtures and has a structure still undetermined. Two possibilities can be envisaged: a bis- CO_{2} adduct and a head-to-tail dimer $\left[\mathrm{Mo}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{4}\right]$. Although efforts to grow crystals suitable for X-ray analysis have so far proved unsuccessful, chemical evidence, particularly the stability of the complex toward loss of CO_{2} and the failure to observe CO_{2} displacement by $\mathrm{N}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, or phosphine ligands (PMe_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$), seems more in favor of formulation as a head-to-tail dimer A, similar to $\left[\operatorname{IrCl}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right] .{ }^{5}$

A
Further chemical and spectroscopic studies now in progress may clarify these points. It should be recalled here that although head-to-tail dimers are considered to be intermediates in the metal-induced disproportionation of CO_{2}, in those instances where they have been isolated, they are stable and do not rearrange. ${ }^{\text {Ia }}$ We have similarly been unable to observe conversion of 1 into the disproportionation products 2 or 3.

For 2, formulation as a carbonyl-carbonate complex with a bidentate CO_{3} group $\left[\mathrm{Mo}\left(\mathrm{O}_{2} \mathrm{CO}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{4}\right]$ comes from both spectroscopic and chemical evidence. ${ }^{6}$ Upon attempted dissolution, 2 loses one of the coordinated PMe_{3} molecules to afford 3, which has been characterized by X-ray ${ }^{7}$ analysis as a dimeric species with tridentate bridging CO_{3} groups, B . Conversely, interaction of 3 with neat PMe_{3} yields 2 (eq 1).

$$
\begin{equation*}
\underset{2}{2}\left[\mathrm{Mo}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{4}\right] \stackrel{\mathrm{THF}}{\underset{\mathrm{PMe}_{3}}{ }}\left[\mathrm{Mo}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{3}\right]_{2} \tag{1}
\end{equation*}
$$

B
It is pertinent to note here that the partially characterized complex of composition $\left[\mathrm{Mo}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]$, formed in the reaction of cis- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]$ with CO_{2} and formulated ${ }^{2}$ as a $\mathrm{Mo}-\mathrm{CO}_{2}$ complex, behaves similarly to 2 , dissociating in solution one of the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands to yield $\left[\mathrm{Mo}\left(\mathrm{CO}_{3}\right)(\mathrm{CO})-\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]_{2}$, which is structurally analogous to 3. Furthermore, the IR data reported for $\left[\mathrm{Mo}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]$ may also be interpreted ${ }^{8}$ by assuming the presence of a carbonyl and a monodentate carbonate ligands, i.e., $\left[\mathrm{Mo}\left(\mathrm{OCO}_{2}\right)(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{4}\right]$.

[^0]

Figure 1. Molecular structure of the carbonate complex $4\left[\mathrm{Mo}_{4}\left(\mu_{4}-\right.\right.$ $\left.\left.\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\mathrm{O})_{2}\left(\mu_{2}-\mathrm{O}\right)_{2}\left(\mu_{2}-\mathrm{OH}\right)_{4}\left(\mathrm{PMe}_{3}\right)_{6}\right]$.

If cis- $\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right]$ and CO_{2} are reacted at room temperature and pressure, in a $2: 1$ acetone:toluene mixture, complex 2 crystallizes upon standing for a period of 1-3 days. If the mixture is allowed to stand at $20-25^{\circ} \mathrm{C}$ for $15-20$ days, small amounts of red-orange crystals ${ }^{9}$ of a complex characterized by X-ray crystallography as an unusual mixed-valence $\mathrm{Mo}^{\mathbf{n}}-\mathrm{Mo}^{\mathrm{V}}$ species of composition $\left[\mathrm{Mo}_{4}\left(\mu_{4}-\mathrm{CO}_{3}\right)(\mathrm{CO})_{2}(\mathrm{O})_{2}\left(\mu_{2}-\mathrm{O}\right)_{2}\left(\mu_{2^{-}}\right.\right.$ $\mathrm{OH})_{4}\left(\mathrm{PMe}_{3}\right)_{6}$] (4) are also obtained. Complex 4 contains a

bidentate, quadruply bridging CO_{3} group, engaged in a novel mode of binding. The molecular structure and atom labeling scheme for 4 are presented in Figure $1 .{ }^{10}$ The molecule resides on a crystallographic 2 -fold axis that contains C 11 and O 5 of the carbonate ligand. The carbonate ligand bridges all four molybdenum atoms, with two molybdenum atoms bonded to each carbonate oxygen off the symmetry axis ($\mathrm{Mol}-\mathrm{O} 4=2.221$ (3) $\AA, \mathrm{Mo} 2-\mathrm{O} 4=2.419(4) \AA$). The outer Mo^{11} atoms are seven coordinate, bonded to one oxygen of the carbonate ligand, two bridging hydroxy ligands, three trimethylphosphine groups, and a carbonyl moiety. The overall coordination about these Mo^{11} atoms is similar to that found for $\left[\mathrm{Mo}\left(\mu-\mathrm{CO}_{3}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{3}\right]_{2}{ }^{7}$ (3) and $\left[\mathrm{Mo}\left(\mu-\mathrm{CO}_{3}\right)(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]_{2}$. ${ }^{2}$

The two inner Mo^{v} atoms show bonding characteristics similar to other $\mathrm{Mo}_{2} \mathrm{O}_{4}{ }^{2+}$ moieties that have been structurally characterized; ${ }^{11}$ these include a Mo-Mo single bond (2.5522 (9) \AA), a bent bridging arrangement of oxygen atoms to form a distorted octahedral coordination about the Mo^{v} atoms, and a terminal oxo group (Mo2-O6 $=1.672(4) \AA$) that weakens the bond trans to it $(\mathrm{Mo} 2-\mathrm{O} 4=2.419(4) \AA$). Although it is not easy to rationalize the formation of this complex, it is evident that small amounts of water present in the acetone used must play an important role. Data available so far suggest the implication of $\mathbf{3}$ at some stages of the reaction.

[^1]Acknowledgment. We are grateful to the Spanish CAICYT (E.C.) and Ministerio de Educaciōn y Ciencia (J.M.M. and M.L.P.) and to the U.S. National Science Foundation (J.L.A.) for support of this work.

Registry No. 1, 85405-72-7; 2, 85405-73-8; 3, 85405-74-9; 4, 85405-$75-0 ; c i s-\left[\mathrm{Mo}\left(\mathrm{N}_{2}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right], 82044-78-8 ; \mathrm{CO}_{2}, 124-38-9$.

Supplementary Material Available: Tables of final fractional coordinates, thermal parameters, bond distances and angles, and observed and calculated structure factors for 4 (13 pages). Ordering information is given on any current masthead page.

Anion Ordering in Mixed-Valence $\mathbf{C s}_{2} \mathbf{S b C l}_{6}$ and Related Salts

Kosmas Prassides and Peter Day*
Inorganic Chemistry Laboratory Oxford University, Oxford OXI $3 Q R$, United Kingdom

Anthony K. Cheetham

Chemical Crystallography Laboratory Oxford University, Oxford OX1 3QR, United Kingdom

Received January 21, 1983
$\mathrm{Cs}_{2} \mathrm{SbCl}_{6}$, first prepared in 1901, ${ }^{1}$ was originally described as an $\mathrm{Sb}^{\mathrm{NV}}$ salt. However, a great deal of spectroscopic evidence (e.g., Mössbauer, ${ }^{2}$ far infrared, ${ }^{3}$ Raman, ${ }^{4}$ ultraviolet, ${ }^{5}$ and photoelectron spectra ${ }^{6}$) points to the existence of distinguishable $\mathrm{Sb}^{111} \mathrm{Cl}_{6}{ }^{3-}$ and $\mathrm{Sb}^{\vee} \mathrm{Cl}_{6}{ }^{-}$in the structure, and its semiconductivity ${ }^{7}$ and visible absorption ${ }^{5,8}$ show that $\mathrm{Cs}_{2} \mathrm{SbCl}_{6}$ is a classical Robin-Day ${ }^{9}$ class II mixed-valency compound. Additional recent measurements ${ }^{10}$ of the far infrared and Raman spectra have also been interpreted in terms of increased localization of the Sb oxidation states at low temperature. Nevertheless, there remains a puzzle about its crystal structure. Wells ${ }^{1}$ showed that $\mathrm{Cs}_{2} \mathrm{SbCl}_{6}$ forms mixed crystals with salts like $\mathrm{Cs}_{2} \mathrm{SnCl}_{6}$ and $\mathrm{Cs}_{2} \mathrm{PtCl}_{6}$, and early X-ray powder diffraction patterns ${ }^{11,12}$ were indexed by using the space group Fm 3 m . X-ray powder photographs of mixed-metal compounds $\mathrm{Cs}_{2} \mathrm{M}^{111}{ }_{0.5} \mathrm{Sb}_{v 0.5} \mathrm{Cl}_{6}^{8}$ were also indexed as Fm 3 m , implying that the $\mathrm{MCl}_{6}{ }^{3-}$ and $\mathrm{SbCl}_{6}{ }^{-}$groups were randomly distributed. Given the difference in charge between the two anions, this seems inherently unlikely, and given that the X-ray scattering is dominated by the Cs and Sb , we have recorded neutron powder diffraction profiles of $\mathrm{Cs}_{2} \mathrm{SbCl}_{6}$ itself and a number of mixed-metal analogues. We find that there is indeed a superlattice ordering of $S b^{111}$ (and other M^{111}) and Sb^{V} at low temperature in several salts of this type, while others remain disordered. The presence or absence

[^2]
[^0]: (4) 1: IR (Nujol) $1685 \mathrm{sh}, 1670 \mathrm{vs}, 1635 \mathrm{sh}, 1155 \mathrm{~s}, 1135 \mathrm{w}, 1100 \mathrm{~s}\left(\mathrm{CO}_{2}\right.$ groups). Anal. Calcd for $\mathrm{MoC}_{14} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{4}: \mathrm{C}, 34.43 ; \mathrm{H}, 7.38 ; \mathrm{O}, 13.12$. Found: C, $34.68 ; \mathrm{H}, 7.57 ; \mathrm{O}, 13.1$. 2: IR 1810 vs (CO), $1600 \mathrm{vs}, 1235 \mathrm{~m}$, $1015 \mathrm{w}, 840 \mathrm{~m}\left(\mathrm{CO}_{3}\right)$. Anal. Calcd for $\mathrm{MoC}_{14} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{4}: \mathrm{C}, 34.43 ; \mathrm{H}, 7.38$. Found: C, $34.20 ; \mathrm{H}, 7.43$. 3: IR 1765 vs (CO), 1500 vs, $840 \mathrm{~m}\left(\mathrm{CO}_{3}\right)$. Anal. Calcd for $\mathrm{MoC}_{11} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{P}_{3}$: $\mathrm{C}, 32.04$; $\mathrm{H}, 6.55$. Found: C, 32.25; H, 6.75 .
 (5) Herskovitz, T.; Guggenberger, L. J. J. Am. Cnem. Soc. 1976, 98, 1615-1616.
 (6) For $\mathrm{Fe}\left(\mathrm{O}_{2} \mathrm{CO}\right)(\mathrm{CO})\left(\mathrm{PMe}_{3}\right)_{3}$ IR bands at $1898,1604,1239,1013$. and $832 \mathrm{~cm}^{-1}$ have been reported: Karsch, H. H. Chem. Ber. 1977, 210 , 2213-2221.
 (7) Complex 3 crystallizes in the triclinic space group $P \mathrm{I}$ with unit cell dimensions $a=9.320$ (3) $\AA, b=9.570$ (3) $\AA, c 12.010$ (4) $\AA . \alpha=77.32(2)^{\circ}$, $\beta=70.64$ (2) ${ }^{\circ}, \gamma=64.23$ (2), and $D_{\text {calce }}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=1$.
 Complex 3 crystallizes in the triclinic space group $P \overline{1}$ with unit cell djmensions $a=9.320$ (3) $\AA, b=9.570$ (3) $\AA, c 12.010$ (4) $\AA, \alpha=77.32$ (2) ${ }^{\circ}$, $\beta=70.64$ (2) ${ }^{\circ}, \gamma=64.23$ (2), and $D_{\text {calced }}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=1$.
 (8) Bands at $1760(\nu \mathrm{CO}), 1510$, and $1335 \mathrm{~cm}^{-1}\left(\nu_{\mathrm{CO}}\left(\mathrm{B}_{2}\right)\right.$ and $\left(\nu_{\mathrm{CO}}+\nu_{\mathrm{CO}_{\mathrm{C}}}\right)$ (A_{1}), respectively, for monodentate carbonate ($\left.\mathrm{O}_{\mathrm{o}}\right)_{2} \mathrm{C}-\mathrm{O}_{\mathrm{c}}-\mathrm{M}$, assuming linear $\mathrm{CO}_{\mathrm{c}} \mathrm{M}$ group and $C_{2 s}$ symmetry). See: Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", 3rd ed.: Wiley: New York, 1978; pp 243-245.

[^1]: (9) 4: IR (Nujol) 3570, 3400 (OH), 1760 (CO), 1560, 1280, 1080 $\left(\mathrm{CO}_{3}{ }^{2-}\right), 975(\mathrm{Mo}=\mathrm{O})$, and $945 \mathrm{~cm} ;\left(\mathrm{PMe}_{3}\right)$. Anal. Calcd for $\mathrm{MO}_{4} \mathrm{C}_{21} \mathrm{H}_{58} \mathrm{O}_{13} \mathrm{P}_{6}$: $\mathrm{C}, 23.17 ; \mathrm{H}, 5.33 ; \mathrm{O}, 19.1$. Found: $\mathrm{C}, 24.32 ; \mathrm{H}, 5.63 ; \mathrm{O}$, 18.7. In addition to 2 and 4 , $c l s-\left[\mathrm{Mo}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right]$ was crystallized from the mother liquor.
 (10) 4 crystallizes in the orthorrhombic space group Pbcn with lattice constants $a=26.866$ (9) $\AA, b=12.934$ (4) $\AA, c=11.965$ (2) \AA, and $D_{\text {calc }}$ $=1.74 \mathrm{~g} \mathrm{~cm}^{-3}$ for four tetrametallic units in the cell. Least-squares refinement based on 1638 observed reflections led to a final R value of 0.018 .
 (11) Stiefel, E. I. Prog. Inorg. Chem. 1977, 22, 1-223 and references therein.

[^2]: (1) Wells, H. L.; Metzger, F. J. Am. Chem. J. 1901, 26, 268.
 (2) Birchall, T.; Valle, B. D.; Martineau, E.; Milne, J. B. J. Chem. Soc. A 1971. 1855. Donaldson, J. D.; Tricker, M. J.; Dale, B. W. J. Chem. Soc., Dalton Trans. 1972, 893. Longworth, G.; Day, P. Inorg. Nucl. Chem. Lett. 1976, $12,451$.
 (3) Barrowcliffe, T.; Beattie, I. R.; Day, P.; Livingstone, K. J. Chem. Soc. A 1967, 1810. Clark, H. W.; Swanson, B. I. J. Am. Chem. Soc. 1981, l03, 2928.
 (4) Clark, R. J. H.; Trumble, W. R. J. Chem. Soc., Dalton Trans. 1976, 1145.
 (5) Atkinson, L.; Day, P. J. Chem. Soc. A 1968, 2423.
 (6) Tricker, M. J.; Adams, I.; Thomas, J. M. Inorg. Nucl. Chem. Lett. 1972, 8, 633. Burroughs, P.; Hamnett, A.: Orchard, A. F. J. Chem. Soc., Dalton Trans. 1974, 565.
 (7) Atkinson, L.; Day, P. J. Chem. Soc. A 1968, 2432.
 (8) Day, P. Inorg. Chem. 1963, 2, 452.
 (9) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.
 (10) Clark, H. W.; Swanson, B. I. J. Am. Chem. Soc. 1981, l03, 2928.
 (11) Jensen, K. A. Z. Anorg. Allg. Chem. 1937, 232, 193.
 (12) Tovborg-Jensen, A.; Rasmussen, S. E. Acta Chem. Scand. 1955, 9, 708.

